Школьный этап по химии Химия. 11 класс. Ограничение по времени 90 минут	

Кумольный способ. Вариант №1

#1185963

Соединения X и Y имеют большое значение для промышленности и синтеза других органических соединений. Для их получения применяется так называемый кумольный способ, стадии которого представлены ниже:

Соединение A – нециклический углеводород с массовой долей углерода 85,71%, при окислении которого перманганатом калия в кислой среде образуется уксусная кислота и углекислый газ. B также является углеводородом. После окисления соединения B и последующего гидролиза были получены вещества X и Y, причем молярная масса X больше молярной массы Y.

X – слабая органическая кислота. Это соединение ядовито, оставляет ожоги на коже. При долгом хранении на воздухе розовеет, что связано с его окислением.

Об Y известно, что после полного сжигания 2 г этого соединения в избытке кислорода образуется 2,317 л газа (при н.у.) и 1,862 г жидкости.

Определите вещество A_{\bullet} Запишите ответ в виде формулы. Формулу запишите БЕЗ пробелов, знаков препинания и дополнительных символов, используйте только ЛАТИНСКИЕ символы (например, H2S)

дополнительных символов, используйте только ЛАТИНСКИЕ символы (например, H2S)
Правильный ответ:
СЗН6
Формула вычисления баллов: 0-41-0
4 балла
Запишите молярную массу Б. Ответ дайте в г/моль и округлите до целых. Никаких иных символов, кроме используемых записи числа (в частности, пробелов), быть не должно. Например: 25
Правильный ответ:
120
Формула вычисления баллов: 0-41-0
4 балла
Запишите повседневное название вещества X. В качестве ответа укажите ОДНО слово в именительном падеже БЕЗ пробелов, знаков препинания и дополнительных символов. Например: метан
Правильный ответ:
фенол
Формула вычисления баллов: 0-61-0
6 баллов

Запишите повседневное название вещества **Y.** В качестве ответа укажите ОДНО слово в именительном падеже БЕЗ пробелов, знаков препинания и дополнительных символов. Например: метан

Правильный ответ:

ацетон

Формула вычисления баллов: 0-6 1-0

6 баллов

Решение задачи:

1) Определим соотношение углерода и водорода в соединении А. Составим уравнение:

$$rac{12\, \Gamma/{
m MOЛЬ}}{12\, \Gamma/{
m MOЛЬ} + x\, \Gamma/{
m MOЛЬ}} = 0,8571,$$

отсюда x=2, что соответствует общей формуле C_xH_{2x} . Так как при окислении соединения **A** перманганатом калия в кислой среде образуется уксусная кислоты и углекислый газ, можно догадаться, что **A** – это пропен (C_3H_6) .

2) Реакция взаимодействия бензола и пропена в присутствии кислоты Льюиса – это реакция алкилирования бензола, в результате чего образуется кумол $C_6H_5-CH(CH_3)_2$. Его молярная масса составляет

$$M=9\cdot 12$$
 г/моль $+12\cdot 1$ г/моль $=120$ г/моль.

- **3)** По описанию соединения **X** можно догадаться, что речь идет о феноле. Также, это один из продуктов кумольного способа с большей молярной массой.
- 4) Образовавшийся газ CO_2 , его количество:

$$n=rac{2,317\, ext{л}}{22,4\, ext{л/моль}}=0,\!1034\, ext{моль},$$

что соответствует количеству углерода в Y. Количество водорода составляет:

$$n = \frac{1,862 \, \Gamma}{18 \, \Gamma / \text{моль}} \cdot 2 = 0,2069 \, \text{моль}.$$

Определим, есть ли в соединении кислород:

$$2$$
 г $0,\!1034$ моль \cdot $12\frac{\Gamma}{\text{моль}}$ $0,\!2069$ моль \cdot $1\frac{\Gamma}{\text{моль}}$ $=$ $0,\!5523$ г

кислорода или $0{,}0345$ моль кислорода.

Таким образом, в соединении Y соотношение O:C:H=1:3:6. Это соответствует молекуле ацетона $CH_3C(O)CH_3$.

Кумольный способ. Вариант №2

6 баллов

#1185964

Соединения X и Y имеют большое значение для промышленности и синтеза других органических соединений. Для их получения применяется так называемый кумольный способ, стадии которого представлены ниже:

$$A + \nearrow \xrightarrow{AlCl_3, HCl} B \xrightarrow{O_2, HCl} X + Y$$

Соединение A – циклический углеводород с массовой долей углерода 92,31%. Б также является углеводородом. После окисления соединения B и последующего гидролиза были получены вещества X и Y, причем молярная масса Y выше молярной массы X.

Об X известно, что после полного сжигания 2 г этого соединения в избытке кислорода образуется 2,317 л газа (при н.у.) и 1,862 г жидкости.

Y – слабая органическая кислота. Это соединение ядовито, оставляет ожоги на коже. При долгом хранении на воздухе розовеет, что связано с его окислением.

Определите вещество **A.** Запишите ответ в виде формулы.Формулу запишите БЕЗ пробелов, знаков препинания и дополнительных символов, используйте только ЛАТИНСКИЕ символы (например, H2S)

дополнительных символов, используйте только ЛАТИНСКИЕ символы (например, H2S)	
Правильный ответ:	
С6Н6	
Формула вычисления баллов: 0-41-0	
4 балла	
Запишите молярную массу \mathbf{F}_{ullet} Ответ дайте в г/моль и округлите до целых. В качестве ответа вводите целое число. Никак иных символов, кроме используемых для записи числа (в частности, пробелов), быть не должно. Например: 25	ΊИΧ
Правильный ответ:	
120	
Формула вычисления баллов: 0-41-0	
4 балла	
Запишите повседневное название вещества Х. В качестве ответа укажите ОДНО слово в именительном падеже БЕЗ пробелов, знаков препинания и дополнительных символов. Например: метан	
Правильный ответ:	
ацетон	
Формула вычисления баллов: 0-61-0	

Запишите повседневное название вещества **Y.** В качестве ответа укажите ОДНО слово в именительном падеже БЕЗ пробелов, знаков препинания и дополнительных символов. Например: метан

Правильный ответ:

фенол

Формула вычисления баллов: 0-6 1-0

6 баллов

Решение задачи:

1) Определим соотношение углерода и водорода в соединении А. Составим уравнение:

$$rac{12\, \Gamma/{
m MOЛЬ}}{12\, \Gamma/{
m MOЛЬ} + x\, \Gamma/{
m MOЛЬ}} = 0,9231,$$

отсюда x=1, что соответствует общей формуле C_xH_x . А – циклический углеводород, можно сделать вывод, что А – бензол (C_6H_6) .

2) Реакция взаимодействия бензола и пропена в присутствии кислоты Льюиса – это реакция алкилирования бензола, в результате чего образуется кумол $C_6H_5-CH(CH_3)_2$. Его молярная масса составляет

$$M=9\cdot 12$$
 г/моль $+12\cdot 1$ г/моль $=120$ г/моль.

3) Образовавшийся газ – CO_2 , его количество:

$$n = \frac{2{,}317\,{}\Pi}{22{,}4\,{}\Pi/{}$$
МОЛЬ $} = 0{,}1034\,{}$ МОЛЬ,

что соответствует количеству углерода в X. Количество водорода составляет:

$$n = rac{1,862 \, \Gamma}{18 \, \Gamma / ext{MOЛЬ}} \cdot 2 = 0,\!2069 \, ext{MOЛЬ}.$$

Определим, есть ли в соединении кислород:

$$2$$
 г $0,\!1034$ моль \cdot $12\frac{\Gamma}{\text{моль}}-0,\!2069$ моль \cdot $1\frac{\Gamma}{\text{моль}}=0,\!5523$ г

кислорода или 0,0345 моль кислорода.

Таким образом, в соединении X соотношение C: C: H=1:3:6. Это соответствует молекуле ацетона $CH_3C(O)CH_3$.

4) По описанию соединения Y можно догадаться, что речь идет о феноле. Также, это один из продуктов кумольного способа с большей молярной массой.

Органические кислоты. Вариант №1

#1185965

Если все варианты одновременно не помещаются в окно браузера, можно воспользоваться сочетанием клавиш ctrl и (-) (cmd и (-) для Mac) для уменьшения масштаба окна

Обратите внимание, что баллы выставляются только за ПОЛНОСТЬЮ верный ответ.

Многообразие органических кислот очень велико, и все они различны по своей силе. Кислотными свойствами может обладать молекула не только с общей формулой R-COOH, к которой мы так привыкли. Как правило, сила кислоты определяется степенью диссоциации: чем легче отрывается протон – тем сильнее будет кислота.

В качестве тренировочного примера сравним между собой кислотность этилового спирта и воды. Углеводородный радикал (C_2H_5-OH) по сравнению с атомом водорода (H-OH) является более сильным донором электронной плотности, что делает связь O-H менее полярной в случае этилового спирта и, следовательно, менее кислотной (она хуже разрывается, а значит, образуется меньше свободных протонов). Углеводородный радикал (C_2H_5-) как бы «добавляет» электронной плотности на атом кислорода, благодаря чему, кислород может не так сильно перетягивать ее с соседнего атома водорода, чтобы компенсировать свою бо́льшую электроотрицательность. Говоря научными терминами углеводородный радикал (C_2H_5-) оказывает положительный индуктивный эффект (C_2H_5-) сказывает положительный индуктивный эффект (C_2H_5-). Таким образом, вода является более сильной кислотой, чем этиловый спирт.

Данный факт легко подтвердить и экспериментально: металлический натрий вступает в бурную реакцию с водой, которая часто сопровождается воспламенением кусочка металла, в то время как при погружении его в этанол он медленно растворяется с шипением.

Ниже представлен список некоторых органических молекул, проявляющих кислотные свойства:

- 1) CF₃COOH
- 2) **CH₃COOH**
- 3) CH₃CH(OH)CH₃
- 4) CH₃CH₂CH₂OH
- 5) C_2H_2
- 6) CH₂FCOOH

Отдельные органические кислоты обладают кислотными свойствами за счёт подвижности водорода, связанного с углеродом. Так, некоторая органическая кислота X является широко используемым лигандом для получения комплексов d-металлов. Соединение X зеркально-симметрично, его структура идентична своему отражению в плоскости симметрии. X не реагирует с реактивом Толленса и содержит X0% водорода по массе, а мольное соотношение углерода и кислорода составляет X1 гослование X2 гослование X3 гослование X4 гослование X5 гослование X6 гослование

1		C_2H_2			
2		CH ₃ CH(OH)CH ₃			
3		CH ₃ CH ₂ CH ₂ OH			
4	4		CH ₃ COOH		
5		CH₂FCOOH			
6		CF_3COOH			
Доступные варианты ответов:					
$CH_3CH_2CH_2OH$	CH_3COOH		$CH_3CH(OH)CH_3$		
C_2H_2	CF_3COOH		CH_2FCOOH		
Формула вычисления баллов: 0-10 1-0 10 баллов					
2. Запишите структурную формулу X. В отво символов, кроме используемых для записи					
Правильный ответ:					
100					
Формула вычисления баллов: 0-10 1-0					
10 баллов					

1. Расставьте кислоты, начиная с самой слабой и заканчивая самой сильной.

- 1) Самой слабой кислотой в списке является ацетилен C_2H_2 , так как протон в случае этой кислоты отрывается от атома углерода, а не кислорода, а связь C-H менее поляризована и, как следствие, более прочна. Следующей по силе является кислота $CH_3CH(OH)CH_3$, которая представляет собой вторичный спирт. Немногим сильнее ее является кислота $CH_3CH_2CH_2OH$ первичный спирт. Здесь наблюдаем проявление индуктивного эффекта: наличие метильных групп (CH_3) в пропаноле-2 оказывает больший положительный +I эффект, то есть они увеличивают электронную плотность на атоме углерода, связанном с гидроксильной группой, что делает протон менее доступным для отщепления. Осталось три органические кислоты, которые различны по группам R (R-COOH), чем более акцепторной является группа, тем лучше депротонируется кислота.
- 2) Если соединение X используется в качестве лиганда, то в его состав входит донорный атом, вероятнее всего кислород, так как соединения с азотом скорее склонны проявлять основные свойства. Предположим, что формула X это $C_x H_y O_z$. Молярная масса такого соединения должна быть целочисленной. Переберем различное количество водородов:

Число водородов	y = 2	y = 4	y = 6	y = 8
Молярная масса, г/моль	25	50	75	100

Молярная масса получается целочисленной только если число водородов четное.

y=2 или 6 не подходит, так как молярная масса получается нечетной. Наиболее разумное значение -8, так как в таком случае можно подобрать соединение $C_5H_8O_2$. Подумаем над его структурой: соединение зеркально-симметрично, вероятнее всего содержит донорные группы, которые не являются альдегидными (не реагирует с реактивом Толленса). Таким образом, можно догадаться, что соединение X – ацетилацетон $CH_3C(O)CH_2C(O)CH_3$, в котором как раз

C:O=5:2, а M=100 г/моль.

Органические кислоты. Вариант №2

#1185966

Если все варианты одновременно не помещаются в окно браузера, можно воспользоваться сочетанием клавиш ctrl и (-) (cmd и (-) для Мас) для уменьшения масштаба окна

Обратите внимание, что баллы выставляются только за ПОЛНОСТЬЮ верный ответ.

Многообразие органических кислот очень велико, и все они различны по своей силе. Кислотными свойствами может обладать молекула не только с общей формулой R-COOH, к которой мы так привыкли. Как правило, сила кислоты определяется степенью диссоциации: чем легче отрывается протон – тем сильнее будет кислота.

В качестве тренировочного примера сравним между собой кислотность этилового спирта и воды. Углеводородный радикал (C_2H_5-OH) по сравнению с атомом водорода (H-OH) является более сильным донором электронной плотности, что делает связь O-H менее полярной в случае этилового спирта и, следовательно, менее кислотной (она хуже разрывается, а значит, образуется меньше свободных протонов). Углеводородный радикал (C_2H_5-) как бы «добавляет» электронной плотности на атом кислорода, благодаря чему, кислород может не так сильно перетягивать ее с соседнего атома водорода, чтобы компенсировать свою бо́льшую электроотрицательность. Говоря научными терминами углеводородный радикал (C_2H_5-) оказывает положительный индуктивный эффект (+I). Таким образом, вода является более сильной кислотой, чем этиловый спирт.

Данный факт легко подтвердить и экспериментально: металлический натрий вступает в бурную реакцию с водой, которая часто сопровождается воспламенением кусочка металла, в то время как при погружении его в этанол он медленно растворяется с шипением.

Ниже представлен список некоторых органических молекул, проявляющих кислотные свойства:

- 1) CH₃COOH
- 2) CH₃OH
- 3) CH_3CH_2OH
- 4) CCl₃COOH
- 5) CH₃NH₂
- 6) CF₃COOH

Отдельные органические кислоты обладают кислотными свойствами за счёт подвижности водорода, связанного с углеродом. Так, некоторая органическая кислота X является широко используемым лигандом для получения комплексов d-металлов. Соединение X зеркально-симметрично, и его структура идентична своему отражению в плоскости симметрии. X реагирует с реактивом Толленса и содержит 5,55% водорода по массе, а мольное соотношение углерода и кислорода составляет C: O=3:2.

1		CH_3NH_2	
2		CH ₃ CH ₂ OH	
3		СН3ОН	
4		CH_3COOH	
5		CCl ₃ COOH	
6		CF ₃ COOH	
Доступные варианты ответов:			
СН₃СООН	CF_3COOH		CH_3OH
CH_3CH_2OH	CCl ₃ COOH		CH_3NH_2
Формула вычисления баллов: 0-10 1-0 10 баллов			
2. Запишите структурную формулу X. В отв символов, кроме используемых для записи			
Правильный ответ:			
72			
Формула вычисления баллов: 0-10 1-0			
10 баллов			

1. Расставьте кислоты, начиная с самой слабой и заканчивая самой сильной.

- 1) Наиболее слабой кислотой из списка является метиламин CH_3NH_2 , так как связь N-H прочнее связи O-H и сложнее диссоциирует. Следующей по силе является кислота CH_3CH_2OH , а после нее CH_3OH , здесь рассуждения аналогичные тренировочному примеру из условия. Осталось три органические кислоты, которые различны по группам R (R-COOH), чем более акцепторной является группа, тем лучше депротонируется кислота.
- 2) Если соединение X используется в качестве лиганда, то в его состав входит донорный атом, вероятнее всего кислород, так как соединения с азотом скорее склонны проявлять основные свойства. Предположим, что формула X это $C_x H_y O_z$. Молярная масса такого соединения должна быть целочисленной. Переберем различное количество водородов:

Число водородов	y = 2	y = 4	y = 6	y = 8
Молярная масса, г/моль	36	72	108	144

Наиболее разумное значение – 4, так как в таком случае можно подобрать соединение $C_3H_4O_2$. Подумаем над его структурой: соединение зеркально-симметрично, вероятнее всего содержит донорные группы, которые являются альдегидными (реагирует с реактивом Толленса). Таким образом, можно догадаться, что соединение X – пропандиаль (малоновый диальдегид) $HC(O)CH_2C(O)H$, в котором как раз C:O=3:2, а M=72 г/моль.

12 баллов

Формула вычисления баллов: 0-12 1-0

- 1) Исходя из определения, для металлоорганических соединений важна связь M-C, которая есть в соединениях $CH_3MgBr,\ CH_3CH_2CH_2Li,\ Al(C_2H_5)_3.$
- 2) Гелеобразный осадок B вероятнее всего гидроксид металла. Предположим, что это металл из второй группы, в таком случае общая формула гидроксида будет $M(OH)_2$. Определим металл, составим уравнение:

$$\frac{M}{M+2\cdot 16\, \Gamma/\text{моль} + 2\, \Gamma/\text{моль}} = 0,\!4137,$$

отсюда $M=24\ { extsf{\Gamma}}/{ extsf{MOJb}}$, что соответствует магнию.

Определим состав **A**. Представим формулу как RMgHal, посчитаем молярную массу соединения:

$$rac{24\, \Gamma/{
m MOЛЬ}}{0,\!2712} = 88,\!5\, \Gamma/{
m MOЛЬ},$$

молярная масса не целая, следовательно галоген – это хлор. Осталось определить, какой органический фрагмент содержит **A**.

88,5 г/моль-35,5 г/моль-24 г/моль = 29 г/моль,

в таком случае, $R=C_2H_5$. Формула A – C_2H_5MgCl .

12 баллов

CH3CH2CH2MgCl

Формула вычисления баллов: 0-12 1-0

- 1) Исходя из определения, для металлоорганических соединений важна связь M-C, которая есть в соединениях $CH_3MgI,\ (CH_3)_3CLi,\ Al(C_2H_5)_3$
- 2) Гелеобразный осадок B вероятнее всего гидроксид металла. Предположим, что это металл из второй группы, в таком случае общая формула гидроксида будет $M(OH)_2$. Определим металл, составим уравнение:

$$\frac{M}{M+2\cdot 16\, \Gamma/\text{моль} + 2\, \Gamma/\text{моль}} = 0,\!4137,$$

отсюда $M=24\ { extsf{\Gamma}}/{ extsf{MOJb}}$, что соответствует магнию.

Определим состав **A**. Представим формулу как RMgHal, посчитаем молярную массу соединения:

$$rac{24\, \Gamma/\text{моль}}{0,\!2341} = 102,\!5\, \Gamma/\text{моль},$$

молярная масса не целая, следовательно галоген – это хлор. Осталось определить, какой органический фрагмент содержит **A.**

102,5 г/моль-35,5 г/моль-24 г/моль = 43 г/моль,

в таком случае, $R=C_3H_7$. Формула A – C_3H_7MgCl .

Химик Колбочкин нашёл на полке в лаборатории банку с неизвестным мелкодисперсным порошком металла X и решил определить, что это за металл. Для этого он с помощью специального прибора установил, что удельная площадь поверхности данного порошка составляет $49.9 \text{ m}^2/\text{г}$. Далее он установил, что плотность данного порошка составляет 12.02 г/сm^3 . Старший коллега Колбочкина, аспирант Пробиркин, зная, что это за порошок, подсказал Колбочкину, что в одной частице данного порошка содержится 35600 атомов металла X.

Справочные данные: удельная площадь поверхности – это отношение площади поверхности частицы к массе частицы. Площадь поверхности сферы рассчитывается по формуле $S=4\pi r^2$.

Считая, что порошок содержит одинаковые сферические частицы, рассчитайте радиус наночастиц порошка. Ответ дайте в нанометрах и округлите до целого. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов), быть не должно. Пример: 3

Правильный ответ:

5

Формула вычисления баллов: 0-10 1-0

10 баллов

Определите металл X_{\bullet} В ответ запишите химический символ элемента. Например: Na

Правильный ответ:

Pd

Формула вычисления баллов: 0-10 1-0

10 баллов

Решение задачи:

1) По определению удельной площади поверхности:

$$S_{\scriptscriptstyle{
m YA}}=rac{S_{\scriptscriptstyle{
m \Pi OB}}}{m}=rac{4\pi r^2}{
ho\cdotrac{4\pi}{2}r^3}$$
 (частицы сферические) $=rac{3}{
ho r}$ \Longrightarrow

$$r = \frac{3}{\rho S_{\text{уд}}} = \frac{3}{12.02 \frac{\Gamma}{\text{CM}^3} \cdot 49.9 \frac{\text{M}^2}{\Gamma}} = \frac{3}{12020 \frac{\text{KF}}{\text{M}^3} \cdot 49900 \frac{\text{M}^2}{\text{KF}}} = 5 \text{ HM}.$$

$$2)$$
 Известно, что $n=rac{N}{N_A}$;

$$m=nM=rac{MN}{NA}=
ho\cdotrac{4\pi}{3}r^{3}$$

$$M = rac{4\pi r^3 N_A}{3N} = rac{4\pi \cdot (5\cdot 10^{-9} \mathrm{M})^3 \cdot 12020 rac{\mathrm{K}\Gamma}{\mathrm{M}} \cdot 6{,}02 \cdot 10^{23} (\mathrm{MOJ}\mathrm{b})^{-1}}{3\cdot 35600} =$$

$$=0,\!10642rac{\mathsf{K}\Gamma}{\mathsf{MOЛЬ}}=106,\!42rac{\Gamma}{\mathsf{MOЛЬ}}\,$$
 – данная молярная масса соответствует палладию (Pd) .

Химик Колбочкин нашёл на полке в лаборатории банку с неизвестным мелкодисперсным порошком металла X и решил определить, что это за металл. Для этого он с помощью специального прибора установил, что удельная площадь поверхности данного порошка составляет $38,86 \, \text{m}^2/\text{г}$. Далее он установил, что плотность данного порошка составляет $19,3 \, \text{г/сm}^3$. Старший коллега Колбочкина, аспирант Пробиркин, зная, что это за порошок, подсказал Колбочкину, что в одной частице данного порошка содержится $15800 \, \text{атомов}$ металла X.

Справочные данные: удельная площадь поверхности – это отношение площади поверхности частицы к массе частицы. Площадь поверхности сферы рассчитывается по формуле $S=4\pi r^2$.

Считая, что порошок содержит одинаковые сферические частицы, рассчитайте радиус наночастиц порошка. Ответ дайте в нанометрах и округлите до целого. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов), быть не должно. Пример: 3

Правильный ответ:

4

Формула вычисления баллов: 0-10 1-0

10 баллов

Определите металл X_{\bullet} В ответ запишите химический символ элемента. Например: Na

Правильный ответ:

Au

Формула вычисления баллов: 0-10 1-0

10 баллов

Решение задачи:

1) По определению удельной площади поверхности:

$$S_{ exttt{yд}}=rac{S_{ exttt{пов}}}{m}=rac{4\pi r^2}{
ho\cdotrac{4\pi}{3}r^3}$$
 (частицы сферические) $=rac{3}{
ho r}$ \Longrightarrow

$$r=rac{3}{
ho S_{
m yA}}=rac{3}{19.3rac{\Gamma}{{
m c\,M}^3}\cdot 38.86rac{{
m M}^2}{\Gamma}}=rac{3}{19300rac{{
m K}\Gamma}{{
m M}^3}\cdot 38860rac{{
m M}^2}{{
m K}\Gamma}}=4$$
 нм.

$$2)$$
 Известно, что $n=rac{N}{N_A}$;

$$m=nM=rac{MN}{NA}=
ho\cdotrac{4\pi}{3}r^{3}$$

$$M = \frac{4\pi r^3 \rho N_A}{3N} = \frac{4\pi \cdot (4 \cdot 10^{-9} \mathrm{M})^3 \cdot 19300 \frac{\mathrm{K}\Gamma}{\mathrm{M}} \cdot 6{,}02 \cdot 10^{23} (\mathrm{MOЛЬ})^{-1}}{3 \cdot 15800} =$$

$$=0,\!197rac{\mathsf{K}\Gamma}{\mathsf{MOЛЬ}}=197rac{\Gamma}{\mathsf{MOЛЬ}}$$
 – данная молярная масса соответствует золоту (Au) .

Гетерополисоединения. Вариант №1

#1185979

В качестве ответа вводите целое число. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов), быть не должно. Пример: 3

Гетерополисоединения — это кислородсодержащие комплексы переходных металлов, содержащие гетероатомы в составе центрального аниона. Наиболее устойчивой и широко изученной формой таких соединений является структура Кеггина, имеющая общую формулу: $[\mathsf{XM}_{12}O_{40}]^{n-}$, где X — гетероатом, а M — атом переходного металла в высокой степени окисления.

Аммонийная соль **A** является дигидратом. Она кристаллизуется в структуре Кеггина и является продуктом качественной реакции на фосфат анион, причём содержание фосфора в **A** равно **1,6205%**. Для проведения реакции раствор подкисляют азотной кислотой. Получают **A** из аммонийной соли **B**, в которой $\omega(\mathsf{M}) = 57,732\%$, а $\omega(O) = 32,989\%$, а атомная доля **M** составляет $\frac{7}{61}$.

O D			,	
Определите металл М. В	ответ запишите моля	рную массу металла	в г/моль, он	круглив ее до целых

96
Формула вычисления баллов: 0-10 1-0

10 баллов

Запишите реакцию образования вещества **A** из **B**, если в качестве носителя фосфат-ионов выступает ортофосфорная кислота. В ответ запишите сумму минимальных целочисленных коэффициентов перед веществами.

150 Формула вычисления баллов: 0-10 1-0

10 баллов

Правильный ответ:

1) Очевидно, что гетероатом, входящий в состав это P^{+5} . Тогда соль **A** имеет общий вид:

$$(NH_4)_n[P M_{12}O_{40}] \cdot 2H_2O.$$

Отсюда получаем, что молекулярная масса вещества равна:

$$rac{31}{0,016205}=1913$$
 г/моль.

Молекулярная масса металла М равна:

$$\frac{1913 - 31 - 18 \cdot 3 - 16 \cdot 40 - 2 \cdot 18}{12} = 96.$$

Предварительно также необходимо было провести подбор относительно n, в результате которого точно определялся молибден при n=3. Следовательно, M-Mo.

2) Прежде чем записать уравнение реакции, необходимо определить вещество **B**, для начала найдём процентное массовое содержание катиона аммония в нём:

$$100\% - 57{,}7320\% - 32{,}9890\% = 9{,}2790\%$$

Далее определим соотношение $NH_4: Mo: O$ на основе данных задачи, получим:

$$\frac{57,7320}{96}:\frac{32,9890}{16}:\frac{9,279}{18},$$

0,6:2,06:0,52

1,15:3,96:1.

Учитывая, что атомная доля молибдена равна $rac{7}{61}$, получаем, что В $-(NH_4)_6 Mo_7 O_{24}$.

$$7H_3PO_4 + 12(NH_4)_6Mo_7O_{24} + 51HNO_3 = 7(NH_4)_3PMo_{12}O_{40} \cdot 2H_2O + 51NH_4NO_3 + 22H_2O.$$

Суммарно: 7 + 12 + 51 + 7 + 51 + 22 = 150.

Гетерополисоединения. Вариант №2

#1185983

В качестве ответа вводите целое число. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов), быть не должно. Пример: 3

Гетерополисоединения — это кислородсодержащие комплексы переходных металлов, содержащие гетероатомы в составе центрального аниона. Катион гетероатома находится в центре октаэдра из атомов кислорода, что позволяет стабилизировать неустойчивые степени окисления.

Это свойство даёт возможность синтезировать аммонийную соль A, анион которой структурно отвечает формуле $[XM_9O_{32}]^{n-}$, где X — гетероатом в неустойчивой степени окисления, а M — атом переходного металла в высокой степени окисления. A является продуктом окислительно-восстановительной реакции аммонийной соли B, в которой $\omega(M)=57,7320\%$, а $\omega(O)=32,9890\%$, а атомная доля M составляет $\frac{7}{61}$ с сульфатом X ($\omega(X)=37,9403\%$) и перекисью водорода, причем массовое содержание X в A равно 3,8044%. В соединении A металл X имеет степень окисления +4, а с реактивом Чугаева даёт красный окрас. Металл M входит в 6 группу по длиннопериодной таблице Менделеева.

Определите металл ${\bf X}$. В ответ запишите молярную массу металла в г/моль, округлив её до целых.

Формула вычисления баллов: 0-10 1-0
10 баллов
Запишите реакцию образования вещества A , при условии, что окислителем выступает пероксид водорода. В ответ запишите сумму всех коэффициентов перед веществами.

10 баллов

43

Правильный ответ:

Формула вычисления баллов: 0-10 1-0

Правильный ответ:

59

1) Прежде всего определим элемент Х. Сделать это просто:

$$M(\mathsf{X}) = 961 - 0.379403 - 96 = 58,69$$
 г/моль.

Это значение точно соответствует молярной массе никеля. Таким образом, X - Ni. Тогда в общем виде формулу аммонийной соли A можно записать, как

$$(NH_4)_n[Ni\,M_9O_{32}].$$

Отсюда получаем, что молекулярная масса вещества равна:

$$rac{58,69}{0,038044}=1542,69$$
 г/моль.

Молекулярная масса металла М равна:

$$rac{1542,69-18\cdot 6-58,69-16\cdot 32}{9}=96$$
 г/моль.

Предварительно также необходимо было провести подбор относительно n, в результате которого точно определялся молибден при n=6. Следовательно, M-Mo.

2) Прежде чем записать уравнение реакции, необходимо определить вещество **B**, для начала найдём процентное массовое содержание катиона аммония в нём:

$$100\% - 57,7320\% - 32,9890\% = 9,2790\%$$

Далее определим соотношение $NH_4^+: Mo: O$ на основе данных задачи, получим:

$$\frac{57,7320}{96}:\frac{32,9890}{16}:\frac{9,279}{18}$$

0,6:2,06:0,52,

1,15:3,96:1.

Учитывая, что атомная доля молибдена равна $rac{7}{61}$, получаем, что В $-(NH_4)_6 Mo_7 O_{24}$.

$$9(NH_4)_6Mo_7O_{24} + 7NiSO_4 + 7H_2O_2 \rightarrow 7(NH_4)_6[NiM_9O_{32}] + 6H_2O + 6(NH_4)_2SO_4 + H_2SO_4$$

Суммарно: 9+7+7+7+6+6+1=43.