Школьный этап по математике

Математика. 9 класс. Ограничение по времени 120 минут

Трёхцветные короли. Вариант №1

#1186353

В качестве ответа вводите натуральное число. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов), быть не должно. Пример: 25

На шахматную доску выставляют королей трёх цветов: красного, синего и зелёного. Какое максимальное число королей можно выставить на доску 8×8 , чтобы короли одного цвета не били друг друга?

Правильный ответ:

48

Формула вычисления баллов: 0-5 1-0

Решение задачи:

Оценка: разобьём доску на 16 квадратов 2×2 . В каждом таком квадрате может стоять не более 3 королей, так как если бы их там было 4, то какие-то два из них были бы одного цвета и били бы друг друга. Значит, всего королей не более 48. Пример: в каждом квадрате можно расставить 3 короля, например, так:

Ответ: 48.

#1186354

В качестве ответа вводите натуральное число. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов), быть не должно. Пример: 25

На шахматную доску выставляют королей трёх цветов: красного, синего и зелёного. Какое максимальное число королей можно выставить на доску 6×6 , чтобы короли одного цвета не били друг друга?

Правильный ответ:

27

Формула вычисления баллов: 0-5 1-0

Решение задачи:

Оценка: разобьём доску на 9 квадратов 2×2 . В каждом таком квадрате может стоять не более 3 королей, так как если бы их там было 4, то какие-то два из них были бы одного цвета и били бы друг друга. Значит, всего королей не более 27. Пример: в каждом квадрате можно расставить 3 короля, например, так:

Ответ: 27.

#1186355

В качестве ответа вводите натуральное число. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов), быть не должно. Пример: 25

На шахматную доску выставляют королей трёх цветов: красного, синего и зелёного. Какое максимальное число королей можно выставить на доску 10×10 , чтобы короли одного цвета не били друг друга?

Правильный ответ:

75

Формула вычисления баллов: 0-5 1-0

Решение задачи:

Оценка: разобьём доску на 25 квадратов 2×2 . В каждом таком квадрате может стоять не более 3 королей, так как если бы их там было 4, то какие-то два из них были бы одного цвета и били бы друг друга. Значит, всего королей не более 75. Пример: в каждом квадрате можно расставить 3 короля, например, так:

Ответ: 75.

#1186356

В качестве ответа вводите натуральное число. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов), быть не должно. Пример: 25

На шахматную доску выставляют королей трёх цветов: красного, синего и зелёного. Какое максимальное число королей можно выставить на доску 4×4 , чтобы короли одного цвета не били друг друга?

Правильный ответ:

12

Формула вычисления баллов: 0-5 1-0

Решение задачи:

Оценка: разобьём доску на 4 квадрата 2×2 . В каждом таком квадрате может стоять не более 3 королей, так как если бы их там было 4, то какие-то два из них были бы одного цвета и били бы друг друга. Значит, всего королей не более 12. Пример: в каждом квадрате можно расставить 3 короля, например, так:

Ответ: 12.

#1186357

В качестве ответа вводите натуральное число. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов), быть не должно. Пример: 25

На шахматную доску выставляют королей трёх цветов: красного, синего и зелёного. Какое максимальное число королей можно выставить на доску 12×12 , чтобы короли одного цвета не били друг друга?

Правильный ответ:

108

Формула вычисления баллов: 0-5 1-0

Решение задачи:

Оценка: разобьём доску на 36 квадратов 2×2 . В каждом таком квадрате может стоять не более 3 королей, так как если бы их там было 4, то какие-то два из них были бы одного цвета и били бы друг друга. Значит, всего королей не более 108. Пример: в каждом квадрате можно расставить 3 короля, например, так:

Ответ: 108.

Фуршет . Вариант №1

В качестве ответа вводите натуральное число. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов), быть не должно. Пример: 25

На острове рыцарей и лжецов рыцари всегда говорят правду, а лжецы всегда лгут. На «Празднике середины осени» проводили фуршет. 888 гостей рассадили за 5-местные и 6-местные столики, причем пустых мест за столиками не осталось. Когда все расселись, каждый житель написал в своем личном блоге: «Не считая меня, за моим столиком сидит как минимум 4 лжеца».

1. Какое минимальное число рыцарей могло быть среди гостей?

Правильный ответ:

180

Формула вычисления баллов: 0-3 1-0

3 балла

2. Сколько 5-местных столиков было занято при минимально возможном числе рыцарей?

Правильный ответ:

174

Формула вычисления баллов: 0-11-0

1 балл

3. Сколько 6-местных столиков было занято при минимально возможном числе рыцарей?

Правильный ответ:

3.

Решение задачи:

1 балл

Формула вычисления баллов: 0-11-0

За каждым 5-местным столиком обязательно должен быть ровно один рыцарь, иначе либо лжецы скажут правду, либо рыцари солгут. За каждым 6-местным столиком должно сидеть ровно два рыцаря, иначе либо лжецы скажут правду, либо рыцари солгут. Поскольку $888 = 177 \cdot 5 + 3$, т.е. общее количество людей даёт при делении на 5 остаток 3, то общее количество 6-местных столиков должно быть как минимум 3. Тогда общее количество рыцарей должно быть как минимум $1 \cdot 174 + 2 \cdot 3 = 180$. Действительно, если взять три 6-местных столика с 2 рыцарями и 4 лжецами и остальные 174 5-местных столика с 1 рыцарем и 4 лжецами, можно будет рассадить ровно 888 гостей: $5 \cdot 174 + 6 \cdot 3 = 888$.

Ответ: 180 рыцарей, 174 пятиместных столика, 3 шестиместных столика.

Фуршет. Вариант №2 #1186359 В качестве ответа вводите натуральное число. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов), быть не должно. Пример: 25 На острове рыцарей и лжецов рыцари всегда говорят правду, а лжецы всегда лгут. На «Празднике середины осени» проводили фуршет. 877 гостей рассадили за 5-местные и 6-местные столики, причем пустых мест за столиками не осталось. Когда все расселись, каждый житель написал в своем личном блоге: «Не считая меня, за моим столиком сидит как минимум f 4лжеца». 1. Какое минимальное число рыцарей могло быть среди гостей? Правильный ответ: 177 Формула вычисления баллов: 0-3 1-0 3 балла

2. Сколько 5-местных столиков было занято при минимально возможном числе рыцарей?

Правильный ответ:

Формула вычисления баллов: 0-11-0

1 балл

3. Сколько 6-местных столиков было занято при минимально возможном числе рыцарей?

Правильный ответ:

2

Формула вычисления баллов: 0-11-0

1 балл

За каждым 5-местным столиком обязательно должен быть ровно один рыцарь, иначе либо лжецы скажут правду, либо рыцари солгут. За каждым 6-местным столиком должно сидеть ровно два рыцаря, иначе либо лжецы скажут правду, либо рыцари солгут. Поскольку $877 = 175 \cdot 5 + 2$, т.е. общее количество людей даёт при делении на 5 остаток 2, то общее количество 6-местных столиков должно быть как минимум 2. Тогда общее количество рыцарей должно быть как минимум $1\cdot 173 + 2\cdot 2 = 177$. Действительно, если взять два 6-местных столика с 2 рыцарями и 4 лжецами и остальные 173 5-местных столика с 1 рыцарем и 4 лжецами, можно будет рассадить ровно 877 гостей: $5 \cdot 173 + 6 \cdot 2 = 877$.

Ответ: 177 рыцарей, 173 пятиместных столика, 2 шестиместных столика.

Фуршет. Вариант №3 #1186360 В качестве ответа вводите натуральное число. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов), быть не должно. Пример: 25 На острове рыцарей и лжецов рыцари всегда говорят правду, а лжецы всегда лгут. На «Празднике середины осени» проводили фуршет. 899 гостей рассадили за 5-местные и 6-местные столики, причем пустых мест за столиками не осталось. Когда все расселись, каждый житель написал в своем личном блоге: «Не считая меня, за моим столиком сидит как минимум f 4лжеца». 1. Какое минимальное число рыцарей могло быть среди гостей? Правильный ответ: 183 Формула вычисления баллов: 0-3 1-0 3 балла 2. Сколько 5-местных столиков было занято при минимально возможном числе рыцарей? Правильный ответ: Формула вычисления баллов: 0-11-0 1 балл 3. Сколько 6-местных столиков было занято при минимально возможном числе рыцарей? Правильный ответ: Формула вычисления баллов: 0-11-0

1 балл

За каждым 5-местным столиком обязательно должен быть ровно один рыцарь, иначе либо лжецы скажут правду, либо рыцари солгут. За каждым 6-местным столиком должно сидеть ровно два рыцаря, иначе либо лжецы скажут правду, либо рыцари солгут. Поскольку $899 = 179 \cdot 5 + 4$, т.е. общее количество людей даёт при делении на 5 остаток 4, то общее количество 6-местных столиков должно быть как минимум 4. Тогда общее количество рыцарей должно быть как минимум $1 \cdot 175 + 2 \cdot 4 = 183$. Действительно, если взять четыре 6-местных столика с 2 рыцарями и 4 лжецами и остальные 175 5-местных столиков с 1 рыцарем и 4 лжецами, можно будет рассадить ровно 877 гостей: $5 \cdot 175 + 6 \cdot 4 = 899$.

Ответ: 183 рыцаря, 175 пятиместных столиков, 4 шестиместных столика.

Фуршет . Вариант №4

#1186361

В качестве ответа вводите натуральное число. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов), быть не должно. Пример: 25

На острове рыцарей и лжецов рыцари всегда говорят правду, а лжецы всегда лгут. На «Празднике середины осени» проводили фуршет. 883 гостя рассадили за 5-местные и 6-местные столики, причем пустых мест за столиками не осталось. Когда все расселись, каждый житель написал в своем личном блоге: «Не считая меня, за моим столиком сидит как минимум 4 лжеца».

1. Какое минимальное число рыцарей могло быть среди гостей?

Правильный ответ:

179

Формула вычисления баллов: 0-3 1-0

3 балла

2. Сколько 5-местных столиков было занято при минимально возможном числе рыцарей?

Правильный ответ:

173

Формула вычисления баллов: 0-11-0

1 балл

 ${f 3.}$ Сколько ${f 6}$ -местных столиков было занято при минимально возможном числе рыцарей?

Правильный ответ:

3

Формула вычисления баллов: 0-11-0

1 балл

Решение задачи:

За каждым 5-местным столиком обязательно должен быть ровно один рыцарь, иначе либо лжецы скажут правду, либо рыцари солгут. За каждым 6-местным столиком должно сидеть ровно два рыцаря, иначе либо лжецы скажут правду, либо рыцари солгут. Поскольку $883 = 176 \cdot 5 + 3$, т.е. общее количество людей даёт при делении на 5 остаток 3, то общее количество 6-местных столиков должно быть как минимум 3. Тогда общее количество рыцарей должно быть как минимум $1 \cdot 173 + 2 \cdot 3 = 179$. Действительно, если взять три 6-местных столика с 2 рыцарями и 4 лжецами и остальные 173 5-местных столика с 1 рыцарем и 1 лжецами, можно будет рассадить ровно 100 гостя: 101 гостя: 102 гостя: 103 гостя: 103 гостя: 104 гостальные 105 гостания с 105 гостание 106 гостание 107 гостание 108 гостание 108 гостание 108 гостание 108 гостание 108 гостание 109 гостание

Ответ: 179 рыцарей, 173 пятиместных столика, 3 шестиместных столика.

Фуршет. Вариант №5 #1186362 В качестве ответа вводите натуральное число. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов), быть не должно. Пример: 25 На острове рыцарей и лжецов рыцари всегда говорят правду, а лжецы всегда лгут. На «Празднике середины осени» проводили фуршет. 872 гостя рассадили за 5-местные и 6-местные столики, причем пустых мест за столиками не осталось. Когда все расселись, каждый житель написал в своем личном блоге: «Не считая меня, за моим столиком сидит как минимум f 4лжеца». 1. Какое минимальное число рыцарей могло быть среди гостей? Правильный ответ: 176 Формула вычисления баллов: 0-3 1-0 3 балла 2. Сколько 5-местных столиков было занято при минимально возможном числе рыцарей? Правильный ответ: Формула вычисления баллов: 0-11-0 1 балл 3. Сколько 6-местных столиков было занято при минимально возможном числе рыцарей? Правильный ответ:

2

Формула вычисления баллов: 0-11-0

1 балл

Решение задачи:

Ответ: 176 рыцарей, 172 пятиместных столика, 2 шестиместных столика.

#1186363

Корни приведённого квадратного трёхчлена $x^2 + bx + c$ — натуральные числа, а разность его коэффициентов c - b равна 29. Найдите все возможные значения наименьшего из корней этого трёхчлена.

1. Сколько вариантов ответа в этой задаче? В качестве ответа вводите натуральное число. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов), быть не должно. Пример: **25**

Правильный ответ:

3

Формула вычисления баллов: 0-2 1-0

2 балла

2. Запишите все возможные значения наименьшего из корней этого трёхчлена в порядке возрастания без пробелов, не используя никакие знаки препинания. В качестве ответа вводите натуральное число, если вариантов ответа несколько, запишите их в порядке возрастания без пробелов, не используя никакие знаки препинания. Пример:**159**

Правильный ответ:

124

Формула вычисления баллов: 0-3 1-0

3 балла

Решение задачи:

Пусть корни квадратного трёхчлена x^2+bx+c – это натуральные числа y и z, причём y – меньший из двух корней. По теореме Виета yz=c, y+z=-b, тогда yz+y+z=c-b=29. Поскольку yz+y+z=y(z+1)+z+1-1=(z+1)(y+1)-1, значит (z+1)(y+1)=30. Учитывая, что y и z – натуральные числа, а также то, что y – меньший из двух корней, возможны три варианта: y=1, z=14, y=2, z=9, y=4, z=5. Тогда требуемая последовательность имеет вид 124.

Ответ: **3** варианта, **124**.

#1186364

Корни приведённого квадратного трёхчлена $x^2 + bx + c$ — натуральные числа, а разность его коэффициентов c - b равна 27. Найдите все возможные значения наименьшего из корней этого трёхчлена.

1. Сколько вариантов ответа в этой задаче? В качестве ответа вводите натуральное число. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов), быть не должно. Пример: **25**

Правильный ответ:

2

Формула вычисления баллов: 0-2 1-0

2 балла

2. Запишите все возможные значения наименьшего из корней этого трёхчлена в порядке возрастания без пробелов, не используя никакие знаки препинания. В качестве ответа вводите натуральное число, если вариантов ответа несколько, запишите их в порядке возрастания без пробелов, не используя никакие знаки препинания. Пример:**159**

Правильный ответ:

13

Формула вычисления баллов: 0-3 1-0

3 балла

Решение задачи:

Пусть корни квадратного трёхчлена x^2+bx+c – это натуральные числа y и z, причём y – меньший из двух корней. По теореме Виета yz=c,y+z=-b, тогда yz+y+z=c-b=27. Поскольку

$$yz + y + z = y(z+1) + z + 1 - 1 = (z+1)(y+1) - 1$$

, значит (z+1)(y+1)=28. Учитывая, что y и z – натуральные числа, а также то, что y – меньший из двух корней, возможны три варианта: y=1, z=13, y=3, z=6. Тогда требуемая последовательность имеет вид 13.

Ответ: **2** варианта, **13**.

#1186366

Корни приведённого квадратного трёхчлена $x^2 + bx + c$ — натуральные числа, а разность его коэффициентов c - b равна 31. Найдите все возможные значения наименьшего из корней этого трёхчлена.

1. Сколько вариантов ответа в этой задаче? В качестве ответа вводите натуральное число. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов), быть не должно. Пример: **25**

Правильный ответ:

2

Формула вычисления баллов: 0-2 1-0

2 балла

2. Запишите все возможные значения наименьшего из корней этого трёхчлена в порядке возрастания без пробелов, не используя никакие знаки препинания. В качестве ответа вводите натуральное число, если вариантов ответа несколько, запишите их в порядке возрастания без пробелов, не используя никакие знаки препинания. Пример:**159**

Правильный ответ:

13

Формула вычисления баллов: 0-3 1-0

3 балла

Решение задачи:

Пусть корни квадратного трёхчлена x^2+bx+c – это натуральные числа y и z, причём y – меньший из двух корней. По теореме Виета yz=c, y+z=-b, тогда yz+y+z=c-b=31. Поскольку yz+y+z=y(z+1)+z+1-1=(z+1)(y+1)-1, значит (z+1)(y+1)=32. Учитывая, что y и z – натуральные числа, а также то, что y – меньший из двух корней, возможны три варианта: y=1, z=15, y=3, z=7. Тогда требуемая последовательность имеет вид 13.

Ответ: **2** варианта, **13**.

#1186368

Корни приведённого квадратного трёхчлена $x^2 + bx + c$ — натуральные числа, а разность его коэффициентов c - b равна 23. Найдите все возможные значения наименьшего из корней этого трёхчлена.

1. Сколько вариантов ответа в этой задаче? В качестве ответа вводите натуральное число. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов), быть не должно. Пример: **25**

Правильный ответ:

3

Формула вычисления баллов: 0-2 1-0

2 балла

2. Запишите все возможные значения наименьшего из корней этого трёхчлена в порядке возрастания без пробелов, не используя никакие знаки препинания. В качестве ответа вводите натуральное число, если вариантов ответа несколько, запишите их в порядке возрастания без пробелов, не используя никакие знаки препинания. Пример:**159**

Правильный ответ:

123

Формула вычисления баллов: 0-3 1-0

3 балла

Решение задачи:

Пусть корни квадратного трёхчлена x^2+bx+c – это натуральные числа y и z, причём y – меньший из двух корней. По теореме Виета yz=c, y+z=-b, тогда yz+y+z=c-b=23. Поскольку yz+y+z=y(z+1)+z+1-1=(z+1)(y+1)-1, значит (z+1)(y+1)=24. Учитывая, что y и z – натуральные числа, а также то, что y – меньший из двух корней, возможны три варианта: y=1, z=11, y=2, z=7, y=3, z=5. Тогда требуемая последовательность имеет вид 123.

Ответ: **3** варианта, **123**.

#1186369

Корни приведённого квадратного трёхчлена $x^2 + bx + c$ — натуральные числа, а разность его коэффициентов c - b равна 39. Найдите все возможные значения наименьшего из корней этого трёхчлена.

1. Сколько вариантов ответа в этой задаче? В качестве ответа вводите натуральное число. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов), быть не должно. Пример: **25**

Правильный ответ:

3

Формула вычисления баллов: 0-2 1-0

2 балла

2. Запишите все возможные значения наименьшего из корней этого трёхчлена в порядке возрастания без пробелов, не используя никакие знаки препинания. В качестве ответа вводите натуральное число, если вариантов ответа несколько, запишите их в порядке возрастания без пробелов, не используя никакие знаки препинания. Пример:**159**

Правильный ответ:

134

Формула вычисления баллов: 0-3 1-0

3 балла

Решение задачи:

Пусть корни квадратного трёхчлена x^2+bx+c – это натуральные числа y и z, причём y – меньший из двух корней. По теореме Виета yz=c, y+z=-b, тогда yz+y+z=c-b=39. Поскольку yz+y+z=y(z+1)+z+1-1=(z+1)(y+1)-1, значит (z+1)(y+1)=40. Учитывая, что y и z – натуральные числа, а также то, что y – меньший из двух корней, возможны три варианта: y=1, z=19, y=3, z=9, y=4, z=7. Тогда требуемая последовательность имеет вид 134.

Ответ: **3** варианта, **134**.

Известно, что число $a=\frac{1+\sqrt{5}}{2}$ называют *золотым числом*, и оно является корнем уравнения $x^2-x-1=0$. Найдите значение выражения $a+1+\frac{(3a-1)a}{a+1}$ в численном виде.

Правильный ответ:

5

Формула вычисления баллов: 0-5 1-0

Решение задачи:

Поскольку a является корнем уравнения $x^2-x-1=0$, значит $a=a^2-1$ и $a^2-a=1$. Тогда, учитывая, что $a\neq 1$, получаем:

$$a+1+\frac{(3a-1)a}{a+1}=a+1+\frac{(3a-1)(a^2-1)}{a+1}=$$

$$=a+1+(3a-1)(a-1)=3a^2-3a+2=$$

$$=3(a^2-a)+2=3\cdot 1+2=5$$

Ответ: 5.

Известно, что число $a=rac{1+\sqrt{5}}{2}$ называют *золотым числом*, и оно является корнем уравнения $x^2-x-1=0$. Найдите значение выражения $2-5a+rac{(3a-1)a}{a-1}$ в численном виде.

Правильный ответ:

4

Формула вычисления баллов: 0-5 1-0

Решение задачи:

Поскольку a является корнем уравнения $x^2-x-1=0$, значит $a=a^2-1$ и $a^2-a=1$. Тогда, учитывая, что $a\neq -1$, получаем:

$$2 - 5a + \frac{(3a - 1)a}{a - 1} = 2 - 5a + \frac{(3a - 1)(a^2 - 1)}{a - 1} =$$

$$= 2 - 5a + (3a - 1)(a + 1) = 3a^2 - 3a + 1 =$$

$$= 3(a^2 - a) + 1 = 3 \cdot 1 + 1 = 4$$

Ответ: 4.

Известно, что число $a=rac{1+\sqrt{5}}{2}$ называют *золотым числом*, и оно является корнем уравнения $x^2-x-1=0$. Найдите значение выражения $1-3a+rac{(2a-1)a}{a-1}$ в численном виде.

Правильный ответ:

2

Формула вычисления баллов: 0-5 1-0

Решение задачи:

Поскольку a является корнем уравнения $x^2-x-1=0$, значит $a=a^2-1$ и $a^2-a=1$. Тогда, учитывая, что $a\neq 1$, получаем:

$$1 - 3a + \frac{(2a - 1)a}{a - 1} = 1 - 3a + \frac{(2a - 1)(a^2 - 1)}{a - 1} =$$

$$= 1 - 3a + (2a - 1)(a + 1) = 2a^2 - 2a =$$

$$= 2(a^2 - a) = 2 \cdot 1 = 2$$

Ответ: 2.

Известно, что число $a=\frac{1+\sqrt{5}}{2}$ называют *золотым числом*, и оно является корнем уравнения $x^2-x-1=0$. Найдите значение выражения $1-a+\frac{(3a+1)a}{a+1}$ в численном виде.

Правильный ответ:

3

Формула вычисления баллов: 0-5 1-0

Решение задачи:

Поскольку a является корнем уравнения $x^2-x-1=0$, значит $a=a^2-1$ и $a^2-a=1$. Тогда, учитывая, что $a\neq -1$, получаем:

$$1 - a + \frac{(3a+1)a}{a+1} = 1 - a + \frac{(3a+1)(a^2-1)}{a+1} =$$

$$= 1 - a + (3a+1)(a-1) = 3a^2 - 3a =$$

$$= 3(a^2 - a) = 3 \cdot 1 = 3$$

Ответ: 3.

Известно, что число $a=\dfrac{1+\sqrt{5}}{2}$ называют *золотым числом*, и оно является корнем уравнения $x^2-x-1=0$. Найдите значение выражения $7-2a+\dfrac{(a+2)a}{a+1}$ в численном виде.

Правильный ответ:

6

Формула вычисления баллов: 0-5 1-0

Решение задачи:

Поскольку a является корнем уравнения $x^2-x-1=0$, значит $a=a^2-1$ и $a^2-a=1$. Тогда, учитывая, что $a\neq -1$, получаем:

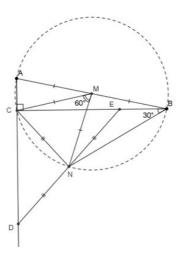
$$7 - 2a + \frac{(a+2)a}{a+1} = 7 - 2a + \frac{(a+2)(a^2 - 1)}{a+1} =$$

$$= 7 - 2a + (a+2)(a-1) = a^2 - a + 5 =$$

$$= (a^2 - a) + 5 = 1 + 5 = 6$$

Ответ: 6.

В прямоугольном треугольнике ABC отметили точку M — середину гипотенузы AB. Точка D выбрана на продолжении прямой AC за точку C, а точка E на отрезке BC. Точка N — середина отрезка DE. Оказалось, что MN = AM = 5 и $CBN = 30^\circ$. Найдите DE.


Правильный ответ:

10

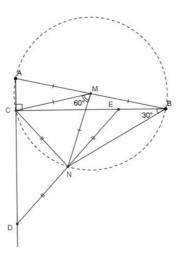
Формула вычисления баллов: 0-5 1-0

Решение задачи:

Заметим, что CM медиана прямоугольного треугольника ABC, выходящая из вершины прямого угла C, значит CM = AM = MB (см. рисунок). По условию MN = AM, следовательно MN = AM = MB = CM. Значит, точки A, B, C, N лежат на одной окружности с центром в точке M. Тогда $\angle CMN$ – центральный, а $\angle CBN$ – вписанный, значит, $\angle CMN = 2\angle CBN = 60^\circ$. Но тогда $\triangle CMN$ — равнобедренный с углом 60° , значит, он равносторонний, и CN = CM = MN = 5. Заметим, что CN медиана прямоугольного треугольника CED, выходящая из вершины прямого угла C, значит CN = EN = ND. Тогда $DE = 2CN = 2 \cdot 5 = 10$.

Ответ: 10.

В прямоугольном треугольнике ABC отметили точку M — середину гипотенузы AB. Точка D выбрана на продолжении прямой AC за точку C, а точка E на отрезке BC. Точка N — середина отрезка DE. Оказалось, что MN = AM = 4 и $CBN = 30^\circ$. Найдите DE.


Правильный ответ:

8

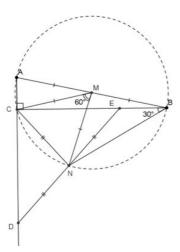
Формула вычисления баллов: 0-5 1-0

Решение задачи:

Заметим, что CM медиана прямоугольного треугольника ABC, выходящая из вершины прямого угла C, значит CM = AM = MB (см. рисунок). По условию MN = AM, следовательно MN = AM = MB = CM. Значит, точки A, B, C, N лежат на одной окружности с центром в точке M. Тогда $\angle CMN$ – центральный, а $\angle CBN$ – вписанный, значит, $\angle CMN = 2\angle CBN = 60^\circ$. Но тогда $\triangle CMN$ — равнобедренный с углом 60° , значит, он равносторонний, и CN = CM = MN = 4. Заметим, что CN медиана прямоугольного треугольника CED, выходящая из вершины прямого угла C, значит CN = EN = ND. Тогда $DE = 2CN = 2 \cdot 4 = 8$.

Ответ: 8.

В прямоугольном треугольнике ABC отметили точку M - середину гипотенузы AB. Точка D выбрана на продолжении прямой AC за точку C, а точка E на отрезке BC. Точка N — середина отрезка DE. Оказалось, что MN = AM = 6 и $CBN = 30^\circ$. Найдите DE.


Правильный ответ:

12

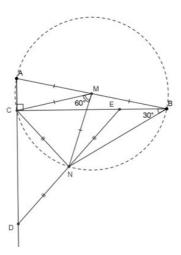
Формула вычисления баллов: 0-5 1-0

Решение задачи:

Заметим, что CM медиана прямоугольного треугольника ABC, выходящая из вершины прямого угла C, значит CM = AM = MB (см. рисунок). По условию MN = AM, следовательно MN = AM = MB = CM. Значит, точки A, B, C, N лежат на одной окружности с центром в точке M. Тогда $\angle CMN$ – центральный, а $\angle CBN$ – вписанный, значит, $\angle CMN = 2\angle CBN = 60^\circ$. Но тогда $\triangle CMN$ — равнобедренный с углом 60° , значит, он равносторонний, и CN = CM = MN = 6. Заметим, что CN медиана прямоугольного треугольника CED, выходящая из вершины прямого угла C, значит CN = EN = ND. Тогда $DE = 2CN = 2 \cdot 6 = 12$.

Ответ: 12.

В прямоугольном треугольнике ABC отметили точку M — середину гипотенузы AB. Точка D выбрана на продолжении прямой AC за точку C, а точка E на отрезке BC. Точка N — середина отрезка DE. Оказалось, что MN = AM = 3 и $CBN = 30^\circ$. Найдите DE.


Правильный ответ:

6

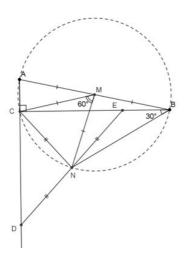
Формула вычисления баллов: 0-5 1-0

Решение задачи:

Заметим, что CM медиана прямоугольного треугольника ABC, выходящая из вершины прямого угла C, значит CM = AM = MB (см. рисунок). По условию MN = AM, следовательно MN = AM = MB = CM. Значит, точки A, B, C, N лежат на одной окружности с центром в точке M. Тогда $\angle CMN$ – центральный, а $\angle CBN$ – вписанный, значит, $\angle CMN = 2\angle CBN = 60^\circ$. Но тогда $\triangle CMN$ — равнобедренный с углом 60° , значит, он равносторонний, и CN = CM = MN = 3. Заметим, что CN медиана прямоугольного треугольника CED, выходящая из вершины прямого угла C, значит CN = EN = ND. Тогда $DE = 2CN = 2 \cdot 3 = 6$.

Ответ: 6.

В прямоугольном треугольнике ABC отметили точку M — середину гипотенузы AB. Точка D выбрана на продолжении прямой AC за точку C, а точка E на отрезке BC. Точка N - середина отрезка DE. Оказалось, что MN = AM = 7 и $CBN = 30^\circ$. Найдите DE.


Правильный ответ:

14

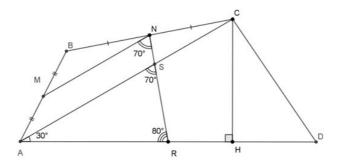
Формула вычисления баллов: 0-5 1-0

Решение залачи:

Заметим, что CM медиана прямоугольного треугольника ABC, выходящая из вершины прямого угла C, значит CM = AM = MB (см. рисунок). По условию MN = AM, следовательно MN = AM = MB = CM. Значит, точки A, B, C, N лежат на одной окружности с центром в точке M. Тогда $\angle CMN = 1$ центральный, а $\angle CBN = 1$ вписанный, значит, $\angle CMN = 2\angle CBN = 60^\circ$. Но тогда $\triangle CMN = 1$ равнобедренный с углом ACMN = 1 заметим, что ACMN = 1 заметим. Что ACMN = 1 заметим ACMN = 1 заметим. Что ACMN = 1 заметим ACMN = 1 заметим. Что ACMN = 1 заметим ACMN = 1 заметим. Что ACMN = 1 заметим ACMN = 1 заметим. Что ACMN = 1 заметим ACMN = 1 заметим. Что ACMN = 1 заметим ACMN = 1 заметим. Что ACMN = 1 заметим ACMN = 1 заметим. Что ACMN = 1 заметим ACMN = 1 заметим. Что ACMN = 1 заметим ACMN = 1 з

Ответ: 14.

В четырёхугольнике ABCD отметили середины стороны AB, BC и AD – точки M, N и R соответственно, $\angle MNR = 70^\circ$, $\angle NRA = 80^\circ$. Расстояние от точки C до прямой AD равно 12. Найдите отрезок NM.


Правильный ответ:

12

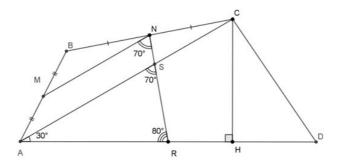
Формула вычисления баллов: 0-5 1-0

Решение задачи:

Опустим из точки C перпендикуляр на прямую AD и отметим точку H на прямой $AD:CH\bot AD$ и CH=12. Заметим, что MN – средняя линия в треугольнике ABC, она параллельна AC и равна её половине. Пусть $NR\cap AC=S$. Тогда $\angle ASR=\angle MNR=70^\circ$ как соответственные при $MN\parallel AC$ и секущей NR. Тогда в $\triangle ASR$ $\angle SAR=180^\circ-70^\circ-80^\circ=30^\circ$. Следовательно, $\triangle ACH$ – прямоугольный с углом 30° , значит AC=2CH=24. Выше отметили, что $MN=\frac{AC}{2}=\frac{24}{2}=12$.

Ответ: 12.

В четырёхугольнике ABCD отметили середины стороны AB, BC и AD – точки M, N и R соответственно, $\angle MNR = 70^\circ$, $\angle NRA = 80^\circ$. Расстояние от точки C до прямой AD равно 10. Найдите отрезок NM.


Правильный ответ:

10

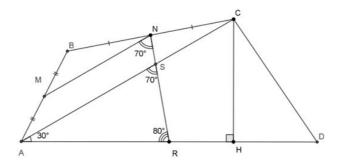
Формула вычисления баллов: 0-5 1-0

Решение задачи:

Опустим из точки C перпендикуляр на прямую AD и отметим точку H на прямой $AD:CH\bot AD$ и CH=10. Заметим, что MN – средняя линия в треугольнике ABC, она параллельна AC и равна её половине. Пусть $NR\cap AC=S$. Тогда $\angle ASR=\angle MNR=70^\circ$ как соответственные при $MN\parallel AC$ и секущей NR. Тогда в $\triangle ASR$ $\angle SAR=180^\circ-70^\circ-80^\circ=30^\circ$. Следовательно, $\triangle ACH$ – прямоугольный с углом 30° , значит AC=2CH=20. Выше отметили, что $MN=\frac{AC}{2}=\frac{20}{2}=10$.

Ответ: 10.

В четырёхугольнике ABCD отметили середины стороны AB, BC и AD – точки M, N и R соответственно, $\angle MNR = 70^\circ$, $\angle NRA = 80^\circ$. Расстояние от точки C до прямой AD равно 8. Найдите отрезок NM.


Правильный ответ:

8

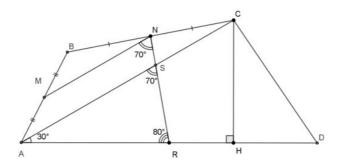
Формула вычисления баллов: 0-5 1-0

Решение задачи:

Опустим из точки C перпендикуляр на прямую AD и отметим точку H на прямой $AD:CH\bot AD$ и CH=8. Заметим, что MN – средняя линия в треугольнике ABC, она параллельна AC и равна её половине. Пусть $NR\cap AC=S$. Тогда $\angle ASR=\angle MNR=70^\circ$ как соответственные при $MN\parallel AC$ и секущей NR. Тогда в $\triangle ASR$ $\angle SAR=180^\circ-70^\circ-80^\circ=30^\circ$. Следовательно, $\triangle ACH$ – прямоугольный с углом 30° , значит AC=2CH=16. Выше отметили, что $MN=\frac{AC}{2}=\frac{16}{2}=8$.

Ответ: 8.

В четырёхугольнике ABCD отметили середины стороны AB, BC и AD – точки M, N и R соответственно, $\angle MNR = 70^\circ$, $\angle NRA = 80^\circ$. Расстояние от точки C до прямой AD равно 9. Найдите отрезок NM.


Правильный ответ:

9

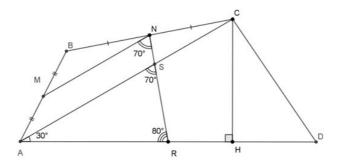
Формула вычисления баллов: 0-5 1-0

Решение задачи:

Опустим из точки C перпендикуляр на прямую AD и отметим точку H на прямой $AD:CH\bot AD$ и CH=9. Заметим, что MN – средняя линия в треугольнике ABC, она параллельна AC и равна её половине. Пусть $NR\cap AC=S$. Тогда $\angle ASR=\angle MNR=70^\circ$ как соответственные при $MN\parallel AC$ и секущей NR. Тогда в $\triangle ASR$ $\angle SAR=180^\circ-70^\circ-80^\circ=30^\circ$. Следовательно, $\triangle ACH$ – прямоугольный с углом 30° , значит AC=2CH=18. Выше отметили, что $MN=\frac{AC}{2}=\frac{18}{2}=9$.

Ответ: 9.

В четырёхугольнике ABCD отметили середины стороны AB, BC и AD – точки M, N и R соответственно, $\angle MNR = 70^\circ$, $\angle NRA = 80^\circ$. Расстояние от точки C до прямой AD равно 11. Найдите отрезок NM.


Правильный ответ:

11

Формула вычисления баллов: 0-5 1-0

Решение задачи:

Опустим из точки C перпендикуляр на прямую AD и отметим точку H на прямой $AD: CH \perp AD$ и CH = 11. Заметим, что MN – средняя линия в треугольнике ABC, она параллельна AC и равна её половине. Пусть $NR \cap AC = S$. Тогда $\angle ASR = \angle MNR = 70^\circ$ как соответственные при $MN \parallel AC$ и секущей NR. Тогда в $\triangle ASR$ $\angle SAR = 180^\circ - 70^\circ - 80^\circ = 30^\circ$. Следовательно, $\triangle ACH$ – прямоугольный с углом 30° , значит AC = 2CH = 22. Выше отметили, что $MN = \frac{AC}{2} = \frac{22}{2} = 11$.

Ответ: 11.

#1186395

В качестве ответа вводите натуральное число. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов), быть не должно. Пример: 25

Известно, что в записи шестой степени натурального числа N используются цифры 0,1 и 3 – каждая по одному разу, ещё три двойки и две четвёрки.

1. Чему может быть равно это число N?

Правильный ответ:

18

Формула вычисления баллов: 0-3 1-0

3 балла

 ${f 2}$. Чему при этом равна шестая степень этого натурального числа ${f N}$?

Правильный ответ:

34012224

Формула вычисления баллов: 0-2 1-0

2 балла

Решение задачи:

Заметим, что сумма цифр этого числа равна $0 \cdot 1 + 1 \cdot 1 + 3 \cdot 1 + 2 \cdot 3 + 4 \cdot 2 = 18$, а значит, делится на 3. Следовательно, само число N делится на 3. Кроме того, в записи числа используется ровно 8 цифр, то есть оно больше, чем 10^7 , но меньше, чем 10^8 .

Заметим, что $12^6=2^{12}\cdot 3^6<2^7\cdot 5^7=10^7$ (т.к. $2^5\cdot 3^6=23328<78125=5^7$), а $25^6>10^8$ (т.к. $5^4=625>2^8=256$). Значит, наше число лежит между 12 и 25 и делится на 3. Это может быть или 15, или 18, или 21, или 24. Но 15 не подходит, так как в этом случае в записи N^6 последняя цифра была бы пятёрка, 24 не подходит, так как в этом случае в записи N^6 последняя цифра была бы шестёрка. Остаётся проверить 21 и 18.

 $21^6 = 85766121$ – не подходит,

 $18^6 = 34012224$ – подходит, значит, N = 18.

Ответ: 18 и 34012224.

#1186396

В качестве ответа вводите натуральное число. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов), быть не должно. Пример: 25

Известно, что в записи пятой степени натурального числа N используются цифры 1,5,6 и 9 – каждая по одному разу, и ещё три восьмёрки.

1. Чему может быть равно это число N?

Правильный ответ:

18

Формула вычисления баллов: 0-3 1-0

3 балла

2. Чему при этом равна пятая степень этого натурального числа N?

Правильный ответ:

1889568

Формула вычисления баллов: 0-2 1-0

2 балла

Решение задачи:

Заметим, что сумма цифр этого числа равна $1 \cdot 1 + 5 \cdot 1 + 6 \cdot 1 + 9 \cdot 1 + 8 \cdot 3 = 45$, а значит, делится на 3. Следовательно, само число N делится на 3. Кроме того, в записи числа используется ровно 7 цифр, то есть оно больше, чем 10^6 , но меньше, чем 10^7 .

Заметим, что $15^5=3^5\cdot 5^5<2^6\cdot 5^6=10^6$ (т.к. $3^5=243<320=5\cdot 2^6$), а $25^5=5^{10}>10^6$ (т.к. $5^4=625>64=2^6$). Значит, наше число лежит между 15 и 25 и делится на 3. Это может быть или 18, или 21, или 24. Но 24 не подходит, так как в этом случае в записи N^5 последняя цифра была бы четвёрка. Остаётся проверить 18 и 21:

 $21^5 = 4084101$ – не подходит,

 $18^5 = 1889568$ – подходит, значит, N = 18.

Ответ: 18 и 1889568.

#1186397

В качестве ответа вводите натуральное число. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов), быть не должно. Пример: 25

Известно, что в записи шестой степени натурального числа N используются цифры 2, 5, 7 и 8 – каждая по одному разу, и ещё две единицы и две шестёрки.

1. Чему может быть равно это число N?

Правильный ответ:

21

Формула вычисления баллов: 0-3 1-0

3 балла

2. Чему при этом равна шестая степень этого натурального числа N?

Правильный ответ:

85766121

Формула вычисления баллов: 0-2 1-0

2 балла

Решение задачи:

Заметим, что сумма цифр этого числа равна $2 \cdot 1 + 5 \cdot 1 + 7 \cdot 1 + 8 \cdot 1 + 1 \cdot 2 + 6 \cdot 2 = 36$, а значит, делится на 3. Следовательно, само число N делится на 3. Кроме того, в записи числа используется ровно 8 цифр, то есть оно больше, чем 10^7 , но меньше, чем 10^8 .

Заметим, что $12^6=2^{12}\cdot 3^6<2^7\cdot 5^7=10^7$ (т.к. $2^5\cdot 3^6=23328<78125=5^7$), а $25^6>10^8$ (т.к. $5^4=625>2^8=256$). Значит, наше число лежит между 12 и 25 и делится на 3. Это может быть или 15, или 18, или 21, или 24. Но 18 не подходит, так как в этом случае в записи N^6 последняя цифра была бы четвёрка. Остаётся проверить 15,21 и 24.

 $15^6 = 11390625$ – не подходит,

 $24^6 = 191102976$ – не подходит,

 $21^6 = 85766121$ – подходит, значит, N = 21.

Ответ: 21 и 85766121.

#1186398

В качестве ответа вводите натуральное число. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов), быть не должно. Пример: 25

Известно, что в записи пятой степени натурального числа N используются цифры 0, 1, 4 – каждая по два раза, и ещё одна восьмёрка.

1. Чему может быть равно это число N?

Правильный ответ:

21

Формула вычисления баллов: 0-3 1-0

3 балла

2. Чему при этом равна пятая степень этого натурального числа N?

Правильный ответ:

4084101

Формула вычисления баллов: 0-2 1-0

2 балла

Решение задачи:

Заметим, что сумма цифр этого числа равна $0 \cdot 2 + 1 \cdot 2 + 4 \cdot 2 + 8 \cdot 1 = 18$, а значит, делится на 3. Следовательно, само число N делится на 3. Кроме того, в записи числа используется ровно 7 цифр, то есть оно больше, чем 10^6 , но меньше, чем 10^7 .

Заметим, что $15^5=3^5\cdot 5^5<2^6\cdot 5^6=10^6$ (т.к. $3^5=243<320=5\cdot 2^6$), а $25^5=5^{10}>10^6$ (т.к. $5^4=625>64=2^6$). Значит, наше число лежит между 15 и 25 и делится на 3. Это может быть или 18, или 21, или 24. Остаётся проверить 18, 21 и 24 :

 $18^5 = 1889568$ – не подходит,

 $24^5 = 7962624$ – не подходит,

 $21^5 = 4084101$ – подходит, значит, N = 21.

Ответ: 21 и 4084101.

#1186399

В качестве ответа вводите натуральное число. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов), быть не должно. Пример: 25

Известно, что в записи пятой степени натурального числа N используются цифры 4,7,9 – каждая по одному разу, и ещё две двойки и две шестёрки.

1. Чему может быть равно это число N?

Правильный ответ:

24

Формула вычисления баллов: 0-3 1-0

3 балла

2. Чему при этом равна пятая степень этого натурального числа N?

Правильный ответ:

7962624

Формула вычисления баллов: 0-2 1-0

2 балла

Решение задачи:

Заметим, что сумма цифр этого числа равна $4\cdot 1+7\cdot 1+9\cdot 1+2\cdot 2+6\cdot 2=36$, а значит, делится на 3. Следовательно, само число N делится на 3. Кроме того, в записи числа используется ровно 7 цифр, то есть оно больше, чем 10^6 , но меньше, чем 10^7 . Заметим, что $15^5=3^5\cdot 5^5<2^6\cdot 5^6=10^6$ (т.к. $3^5=243<320=5\cdot 2^6$), а $25^5=5^{10}>10^6$ (т.к. $5^4=625>64=2^6$).

Значит, наше число лежит между 15 и 25 и делится на 3. Это может быть или 18, или 21, или 24. Но 21 не подходит, так как в этом случае в записи N^5 последняя цифра была бы единица. Аналогично 18 не подходит, так как в этом случае в записи N^5 последняя цифра была бы 8. Остаётся проверить 24:

 $24^5 = 7962624$ подходит, значит, N = 24.

Ответ: 24 и 7962624.

Мультипликатор. Вариант №1

#1186400

В качестве ответа вводите натуральное число. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов), быть не должно. Пример: 25

На доске написано число 3969000. Каждую минуту робот «Мультипликатор» производит с записанным на доске числом следующую операцию: умножает его на одну из трёх дробей – или на $\frac{4}{3}$ или на $\frac{9}{5}$ или на $\frac{25}{7}$, но только если полученное в результате число будет целым. Полученное после умножения целое число робот записывает на доску вместо предыдущего.

-1	17		,	()
Ι.	Какое максимальное количество т	ких операциі	1 сможет	следать робот?
		отторыщи		omoriais poodii

Правильный ответ:

27

Формула вычисления баллов: 0-2 1-0

2 балла

 $oldsymbol{2}$. Сколько операций умножения на дробь $oldsymbol{rac{4}{3}}$ будет при этом совершено?

Правильный ответ:

18

Формула вычисления баллов: 0-11-0

1 балл

3. Сколько операций умножения на дробь $\frac{9}{5}$ будет при этом совершено?

Правильный ответ:

7

Формула вычисления баллов: 0-11-0

1 балл

4. Сколько операций умножения на дробь $\frac{25}{7}$ будет при этом совершено?

Правильный ответ:

2

Формула вычисления баллов: 0-11-0

1 балл

Решение задачи:

Разложим 3969000 на простые множители: $3969000 = 2^3 \cdot 3^4 \cdot 5^3 \cdot 7^2$. Анализируя степени вхождения 7,5 и 3 в исходное число, а также дроби, на которые мы умножаем, введём понятие $\sec a$ числа: пусть каждая семёрка имеет $\sec 7$, каждая пятёрка имеет $\sec 3$, а каждая тройка имеет $\sec 1$. Пусть тогда $\sec a$ кумулятивный $\sec a$ простого множителя на его степень вхождения: $5 \cdot 2 + 3 \cdot 3 + 1 \cdot 4 = 27$. Заметим, что каждая операция уменьшает $\sec a$ числа на a. Действительно:

	изменение кумулятивного веса
умножение на $\frac{4}{3}$	-1
умножение на $\frac{9}{5}$	+1+1-3=-1
умножение на $\frac{25}{7}$	+3+3-7=-1

Полученное после умножения число остаётся целым до тех пор, пока его кумулятивный вес неотрицателен. Значит, можно будет сделать не более 27 операций, причём на $\frac{25}{7}$ можно умножать не более 2 раз, на $\frac{9}{5}$ не более 7 раз и на $\frac{4}{3}$ не более 18 раз. Покажем, что такое возможно:

$$3969000 \cdot \left(\frac{25}{7}\right)^2 \cdot \left(\frac{9}{5}\right)^7 \cdot \left(\frac{4}{3}\right)^{18} = 2^3 \cdot 3^4 \cdot 5^3 \cdot 7^2 \cdot \frac{5^4 \cdot 3^{14} \cdot 2^{36}}{7^2 \cdot 5^7 \cdot 3^{18}} = 2^{39}$$
. Далее ни одной операции совершить будет

Ответ: 27, 18, 7, 2.

Формула вычисления баллов: 0-11-0

1 балл

В качестве ответа вводите натуральное число. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов), быть не должно. Пример: 25

На доске написано число 1134000. Каждую минуту робот «Мультипликатор» производит с записанным на доске числом следующую операцию: умножает его на одну из трёх дробей – или на $\frac{4}{3}$ или на $\frac{9}{5}$ или на $\frac{25}{7}$, но только если полученное в результате число будет целым. Полученное после умножения целое число робот записывает на доску вместо предыдущего.

1. Какое максимальное количество таких операций сможет сделать робот?
Правильный ответ:
20
Формула вычисления баллов: 0-2 1-0
2 балла
$oldsymbol{2}$. Сколько операций умножения на дробь $oldsymbol{rac{4}{3}}$ будет при этом совершено?
Правильный ответ:
14
Формула вычисления баллов: 0-11-0
1 балл
${f 3.}$ Сколько операций умножения на дробь ${f 9\over 5}$ будет при этом совершено?
Правильный ответ:
5
Формула вычисления баллов: 0-11-0
1 балл
$oldsymbol{4.}$ Сколько операций умножения на дробь $oldsymbol{rac{25}{7}}$ будет при этом совершено?
Правильный ответ:

Решение задачи:

Разложим 1134000 на простые множители: $1134000 = 2^4 \cdot 3^4 \cdot 5^3 \cdot 7$. Анализируя степени вхождения 7,5 и 3 в исходное число, а также дроби, на которые мы умножаем, введём понятие $\sec a$ числа: пусть каждая семёрка имеет $\sec 7$, каждая пятёрка имеет $\sec 3$, а каждая тройка имеет $\sec 1$. Пусть тогда $\sec a$ процений $\sec a$ простого множителя на его степень вхождения: $1134000 = 2^4 \cdot 3^4 \cdot 5^3 \cdot 7$. Анализируя степени вхождения $1134000 = 2^4 \cdot 3^4 \cdot 5^3 \cdot 7$. Анализируя степени вхождения $1134000 = 2^4 \cdot 3^4 \cdot 5^3 \cdot 7$. Анализируя степени вхождения $1134000 = 2^4 \cdot 3^4 \cdot 5^3 \cdot 7$. Анализируя степени вхождения $1134000 = 2^4 \cdot 3^4 \cdot 5^3 \cdot 7$. Анализируя степени вхождения $1134000 = 2^4 \cdot 3^4 \cdot 5^3 \cdot 7$. Анализируя степени вхождения $1134000 = 2^4 \cdot 3^4 \cdot 5^3 \cdot 7$. Анализируя степени вхождения $1134000 = 2^4 \cdot 3^4 \cdot 5^3 \cdot 7$. Анализируя степени вхождения $1134000 = 2^4 \cdot 3^4 \cdot 5^3 \cdot 7$. Анализируя степени вхождения $1134000 = 2^4 \cdot 3^4 \cdot 5^3 \cdot 7$. Анализируя степени вхождения $1134000 = 2^4 \cdot 3^4 \cdot 5^3 \cdot 7$. Анализируя степени вхождения $1134000 = 2^4 \cdot 3^4 \cdot 5^3 \cdot 7$. Анализируя степени вхождения $1134000 = 2^4 \cdot 3^4 \cdot 5^3 \cdot 7$. Анализируя степени вхождения $1134000 = 2^4 \cdot 3^4 \cdot 5^3 \cdot 7$. Анализируя степени вхождения $1134000 = 2^4 \cdot 3^4 \cdot 5^3 \cdot 7$. Анализируя степени вхождения $1134000 = 2^4 \cdot 3^4 \cdot 5^3 \cdot 7$. Анализируя степени вхождения $1134000 = 2^4 \cdot 3^4 \cdot 5^3 \cdot 7$. Анализируя степени вхождения $1134000 = 2^4 \cdot 3^4 \cdot 5^3 \cdot 7$. Анализируя степени вхождения $1134000 = 2^4 \cdot 3^4 \cdot 5^3 \cdot 7$. Анализируя степени вхождения $1134000 = 2^4 \cdot 3^4 \cdot 5^3 \cdot 7$. Анализируя степени вхождения $1134000 = 2^4 \cdot 3^4 \cdot 5^3 \cdot 7$. Анализируя степения $1134000 = 2^4 \cdot 3^4 \cdot$

	изменение кумулятивного веса
умножение на $\frac{4}{3}$	-1
умножение на $\frac{9}{5}$	+1+1-3=-1
умножение на $\frac{25}{7}$	+3+3-7=-1

Полученное после умножения число остаётся целым до тех пор, пока его *кумулятивный вес* неотрицателен. Значит, можно будет сделать не более 20 операций, причём на $\frac{25}{7}$ можно умножать не более 1 раза, на $\frac{9}{5}$ не более 5 раз и на $\frac{4}{3}$ не более 14 раза. Покажем, что такое возможно:

$$1134000 \cdot \left(\frac{25}{7}\right)^1 \cdot \left(\frac{9}{5}\right)^5 \cdot \left(\frac{4}{3}\right)^{14} = 2^4 \cdot 3^4 \cdot 5^3 \cdot 7 \cdot \frac{5^2 \cdot 3^{10} \cdot 2^{28}}{7 \cdot 5^5 \cdot 3^{14}} = 2^{32}.$$
 Далее ни одной операции совершить будет невозможно.

Ответ: 20, 14, 5, 1.

Мультипликатор. Вариант №3

#1186402

В качестве ответа вводите натуральное число. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов), быть не должно. Пример: 25

На доске написано число 11907000. Каждую минуту робот «Мультипликатор» производит с записанным на доске числом следующую операцию: умножает его на одну из трёх дробей – или на $\frac{4}{3}$ или на $\frac{9}{5}$ или на $\frac{25}{7}$, но только если полученное в результате число будет целым. Полученное после умножения целое число робот записывает на доску вместо предыдущего.

1. Какое максимальное количество та	аких операций сможет сд	елать робот?

Правильный ответ:

28

Формула вычисления баллов: 0-2 1-0

2 балла

 $oldsymbol{2}$. Сколько операций умножения на дробь $oldsymbol{rac{4}{3}}$ будет при этом совершено?

Правильный ответ:

19

Формула вычисления баллов: 0-11-0

1 балл

3. Сколько операций умножения на дробь $\frac{9}{5}$ будет при этом совершено?

Правильный ответ:

7

Формула вычисления баллов: 0-11-0

1 балл

4. Сколько операций умножения на дробь $\frac{25}{7}$ будет при этом совершено?

Правильный ответ:

2

Формула вычисления баллов: 0-11-0

1 балл

Решение задачи:

Разложим 11907000 на простые множители: $11907000 = 2^3 \cdot 3^5 \cdot 5^3 \cdot 7^2$. Анализируя степени вхождения 7, 5 и 3 в исходное число, а также дроби, на которые мы умножаем, введём понятие Beca числа: пусть каждая семёрка имеет Bec 7, каждая пятёрка имеет Bec 3, а каждая тройка имеет Bec 1. Пусть тогда $\mathit{кумулятивный}$ вес исходного числа равен сумме произведений Beca простого множителя на его степень вхождения: $7 \cdot 2 + 3 \cdot 3 + 1 \cdot 5 = 28$ Заметим, что каждая операция уменьшает $\mathit{кумулятивный}$ Bec числа на 1. Действительно:

	изменение кумулятивного веса
умножение на $\frac{4}{3}$	-1
умножение на $\frac{9}{5}$	+1+1-3=-1
умножение на $\frac{25}{7}$	+3+3-7=-1

Полученное после умножения число остаётся целым до тех пор, пока его *кумулятивный вес* неотрицателен. Значит, можно будет сделать не более 28 операций, причём на $\frac{25}{7}$ можно умножать не более 2 раз, на $\frac{9}{5}$ не более 7 раз и на $\frac{4}{3}$ не более 19 раз. Покажем, что такое возможно:

$$11907000 \cdot \left(\frac{25}{7}\right)^2 \cdot \left(\frac{9}{5}\right)^7 \cdot \left(\frac{4}{3}\right)^{19} = 2^3 \cdot 3^5 \cdot 5^3 \cdot 7^2 \cdot \frac{5^4 \cdot 3^{14} \cdot 2^{38}}{7^2 \cdot 5^7 \cdot 3^{19}} = 2^{41}.$$
 Далее ни одной операции совершить будет

Ответ: 28, 19, 7, 2.

Мультипликатор. Вариант №4

1 балл

#1186403

В качестве ответа вводите натуральное число. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов), быть не должно. Пример: 25

На доске написано число 5670000. Каждую минуту робот «Мультипликатор» производит с записанным на доске числом следующую операцию: умножает его на одну из трёх дробей – или на $\frac{4}{3}$ или на $\frac{9}{5}$ или на $\frac{25}{7}$, но только если полученное в результате число будет целым. Полученное после умножения целое число робот записывает на доску вместо предыдущего.

1. Какое максимальное количество таких операций сможет сделать робот?
Правильный ответ:
23
Формула вычисления баллов: 0-2 1-0
2 балла
9 C
$2.$ Сколько операций умножения на дробь $rac{4}{3}$ будет при этом совершено?
Правильный ответ:
16
Формула вычисления баллов: 0-11-0
1 балл
$rac{9}{5}$ Сколько операций умножения на дробь $rac{9}{5}$ будет при этом совершено?
Правильный ответ:
6 Communication of Control (Control (Co
Формула вычисления баллов: 0-11-0
1 балл
$oldsymbol{4}$. Сколько операций умножения на дробь $oldsymbol{rac{25}{7}}$ будет при этом совершено?
·
Правильный ответ:
1

Решение задачи:

	изменение кумулятивного веса
умножение на $\frac{4}{3}$	-1
умножение на $\frac{9}{5}$	+1+1-3=-1
умножение на $\frac{25}{7}$	+3+3-7=-1

Полученное после умножения число остаётся целым до тех пор, пока его *кумулятивный вес* неотрицателен. Значит, можно будет сделать не более 23 операций, причём на $\frac{25}{7}$ можно умножать не более 1 раза, на $\frac{9}{5}$ не более 6 раз и на $\frac{4}{3}$ не более 16 раз. Покажем, что такое возможно:

 $5670000 \cdot \left(\frac{25}{7}\right)^1 \cdot \left(\frac{9}{5}\right)^6 \cdot \left(\frac{4}{3}\right)^{16} = 2^4 \cdot 3^4 \cdot 5^4 \cdot 7 \cdot \frac{5^2 \cdot 3^{12} \cdot 2^{32}}{7 \cdot 5^6 \cdot 3^{16}} = 2^{36}$. Далее ни одной операции совершить будет

Ответ: 23, 16, 6, 1.

Мультипликатор. Вариант №5

#1186404

В качестве ответа вводите натуральное число. Никаких иных символов, кроме используемых для записи числа (в частности, пробелов), быть не должно. Пример: 25

На доске написано число 9922500. Каждую минуту робот «Мультипликатор» производит с записанным на доске числом следующую операцию: умножает его на одну из трёх дробей – или на $\frac{4}{3}$ или на $\frac{9}{5}$ или на $\frac{25}{7}$, но только если полученное в результате число будет целым. Полученное после умножения целое число робот записывает на доску вместо предыдущего.

1. Какое максимальное количество таких операций сможет сделать робот?		
Правильный ответ:		
30		

2 балла

Формула вычисления баллов: 0-2 1-0

 $oldsymbol{2}$. Сколько операций умножения на дробь $oldsymbol{rac{4}{3}}$ будет при этом совершено?

Правильный ответ:

20
Формула вычисления баллов: 0-11-0

1 балл

1 балл

3. Сколько операций умножения на дробь $\frac{9}{5}$ будет при этом совершено?

Правильный ответ:

Формула вычисления баллов: 0-11-0

4. Сколько операций умножения на дробь $\frac{25}{7}$ будет при этом совершено?

Правильный ответ:

2
Формула вычисления баллов: 0-11-0

1 балл

Решение задачи:

	изменение кумулятивного веса
умножение на $\frac{4}{3}$	-1
умножение на $\frac{9}{5}$	+1+1-3=-1
умножение на $\frac{25}{7}$	+3+3-7=-1

Полученное после умножения число остаётся целым до тех пор, пока его *кумулятивный вес* неотрицателен. Значит, можно будет сделать не более 30 операций, причём на $\frac{25}{7}$ можно умножать не более 2 раз, на $\frac{9}{5}$ не более 8 раз и на $\frac{4}{3}$ не более 20 раз. Покажем, что такое возможно:

$$9922500 \cdot \left(\frac{25}{7}\right)^2 \cdot \left(\frac{9}{5}\right)^8 \cdot \left(\frac{4}{3}\right)^{20} = 2^2 \cdot 3^4 \cdot 5^4 \cdot 7^2 \cdot \frac{5^4 \cdot 3^{16} \cdot 2^{40}}{7^2 \cdot 5^8 \cdot 3^{20}} = 2^{42}.$$
 Далее ни одной операции совершить будет

Ответ: 30, 20, 8, 2.